Properties

Label 400.212.40.b1.b1
Order $ 2 \cdot 5 $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rrr} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right), \left(\begin{array}{rrr} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 4 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times C_5^2:Q_8$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 40T325.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}^2:\Unitary(2,3)$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times F_5$
Normal closure:$C_5:D_5$
Core:$C_1$
Minimal over-subgroups:$C_5:D_5$$D_{10}$$F_5$$F_5$
Maximal under-subgroups:$C_5$$C_2$
Autjugate subgroups:400.212.40.b1.a1400.212.40.b1.c1

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$0$
Projective image$C_2\times C_5^2:Q_8$