Subgroup ($H$) information
| Description: | $C_2\times Q_8$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(25\)\(\medspace = 5^{2} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\left(\begin{array}{rrr}
4 & 3 & 3 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \left(\begin{array}{rrr}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 4
\end{array}\right), \left(\begin{array}{rrr}
3 & 0 & 0 \\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right), \left(\begin{array}{rrr}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right)$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_2\times C_5^2:Q_8$ |
| Order: | \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) |
| Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
| Derived length: | $3$ |
The ambient group is nonabelian, monomial (hence solvable), and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{10}^2:\Unitary(2,3)$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^2:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $25$ |
| Möbius function | $-1$ |
| Projective image | $C_5^2:Q_8$ |