Properties

Label 399300.k.30.a1
Order $ 2 \cdot 5 \cdot 11^{3} $
Index $ 2 \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2\times C_{110}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{10}, b^{3}, c, d^{11}, d^{5}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, abelian (hence metabelian and an A-group), and elementary for $p = 11$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times C_{10}.\PSL(3,11)$
$W$$C_5\times S_3$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}^2\times C_{110}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Minimal over-subgroups:$C_5\times C_{11}^3:C_{10}$$C_{11}^2:C_{330}$$C_{11}^2:C_{220}$
Maximal under-subgroups:$C_{11}^2\times C_{55}$$C_{11}^2\times C_{22}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$$C_{11}\times C_{110}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-3$
Projective image$C_{11}^3:(C_5\times S_3)$