Properties

Label 399300.k.12.a1
Order $ 5^{2} \cdot 11^{3} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3:C_5^2$
Order: \(33275\)\(\medspace = 5^{2} \cdot 11^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{4}, b^{3}, c, d^{11}, d^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_3:C_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ Group of order \(56548227120000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 11^{6} \cdot 19 \)
$W$$C_{11}^3:(C_5\times S_3)$, of order \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Complements:$C_3:C_4$
Minimal over-subgroups:$C_5\times C_{11}^3:C_{15}$$C_5\times C_{11}^3:C_{10}$
Maximal under-subgroups:$C_{11}^2\times C_{55}$$C_{11}^3:C_5$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$$C_{11}^2:C_5^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{11}\wr C_3:C_{20}$