Properties

Label 399300.k.1100.a1
Order $ 3 \cdot 11^{2} $
Index $ 2^{2} \cdot 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_3$
Order: \(363\)\(\medspace = 3 \cdot 11^{2} \)
Index: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $b^{22}, d^{5}, cd^{50}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:C_{165}:C_{20}$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{220}:C_5$
Order: \(1100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Automorphism Group: $D_{110}:C_{20}$, of order \(4400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11 \)
Outer Automorphisms: $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $F_{121}:C_2$, of order \(29040\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \)
$W$$C_{11}^2:(C_5\times S_3)$, of order \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{11}^2:C_{165}:C_{20}$
Complements:$C_{220}:C_5$ $C_{220}:C_5$
Minimal over-subgroups:$C_{11}\wr C_3$$C_{11}^2:C_{15}$$C_{11}^2:C_{15}$$C_{11}^2:C_6$
Maximal under-subgroups:$C_{11}^2$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{11}^2:C_{165}:C_{20}$