Properties

Label 399300.d.550.a1
Order $ 2 \cdot 3 \cdot 11^{2} $
Index $ 2 \cdot 5^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_6$
Order: \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)
Index: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $d^{55}, c, d^{10}, b^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}\wr C_3:C_{10}^2$
Order: \(399300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{110}:C_5$
Order: \(550\)\(\medspace = 2 \cdot 5^{2} \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $F_5\times F_{11}$, of order \(2200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11 \)
Outer Automorphisms: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 5$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_{10}^2.C_2^4$
$\operatorname{Aut}(H)$ $F_{121}:C_2$, of order \(29040\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \)
$W$$C_{11}^2:(C_5\times S_3)$, of order \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{110}$
Normalizer:$C_{11}\wr C_3:C_{10}^2$
Complements:$C_{110}:C_5$ $C_{110}:C_5$
Minimal over-subgroups:$C_{11}^2:C_{66}$$C_{11}^2:C_{30}$$C_{11}^2:C_{30}$$C_{11}^2:D_6$
Maximal under-subgroups:$C_{11}^2:C_3$$C_{11}\times C_{22}$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$55$
Projective image$C_{11}^3:(S_3\times C_5^2)$