Properties

Label 39930.c.10.a1
Order $ 3 \cdot 11^{3} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\wr C_3$
Order: \(3993\)\(\medspace = 3 \cdot 11^{3} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(33\)\(\medspace = 3 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 60 & 98 \\ 75 & 60 \end{array}\right), \left(\begin{array}{rr} 56 & 44 \\ 33 & 67 \end{array}\right), \left(\begin{array}{rr} 78 & 0 \\ 0 & 45 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 56 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_5\times C_{11}\wr S_3$
Order: \(39930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_5.C_2^3$
$W$$C_{11}^2:S_3$, of order \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{55}$
Normalizer:$C_5\times C_{11}\wr S_3$
Complements:$C_{10}$
Minimal over-subgroups:$C_{11}^2:C_{165}$$C_{11}\wr S_3$
Maximal under-subgroups:$C_{11}^3$$C_{11}^2:C_3$$C_{33}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_5\times C_{11}^2:S_3$