Properties

Label 393750000.d.360._.B
Order $ 2 \cdot 5^{7} \cdot 7 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7:D_7$
Order: \(1093750\)\(\medspace = 2 \cdot 5^{7} \cdot 7 \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $\langle(1,8)(2,9)(3,10)(4,6)(5,7)(11,17)(12,18)(13,19)(14,20)(15,16)(21,45)(22,41) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^8.C_2.\SL(2,8)$
Order: \(393750000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2362500000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{8} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_5^6.C_{217}.C_{30}.C_2^3.C_2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$36$
Möbius function not computed
Projective image not computed