Properties

Label 393750000.c.360.a1.a1
Order $ 2 \cdot 5^{7} \cdot 7 $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^7:D_7$
Order: \(1093750\)\(\medspace = 2 \cdot 5^{7} \cdot 7 \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $\langle(11,14,12,15,13)(16,19,17,20,18)(26,30,29,28,27)(31,33,35,32,34), (31,35,34,33,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_5^7.S_7$
Order: \(393750000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
Exponent: \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(6300000000\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_5^6.C_{217}.C_{30}.C_2^3.C_2$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$120$
Möbius function not computed
Projective image not computed