Properties

Label 393216.cq.4.B
Order $ 2^{15} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6.C_2\wr S_4$
Order: \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(19,20)(23,24), (3,4)(5,6)(9,10)(11,12)(15,16)(17,18)(21,22)(23,24), (13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^8.C_2\wr S_4$
Order: \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^6.C_6.C_2^4.C_2^4$, of order \(25165824\)\(\medspace = 2^{23} \cdot 3 \)
$\operatorname{Aut}(H)$ Group of order \(50331648\)\(\medspace = 2^{24} \cdot 3 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_2\wr S_4$
Normal closure:$C_2^8.C_2\wr S_4$
Core:$C_2^9.C_2^5$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed