Properties

Label 39182082048.eb.24._.IC
Order $ 2^{10} \cdot 3^{13} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6.(C_3^6.C_2^7:S_4)$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(11,12)(14,15)(19,21,20)(22,24,23)(26,27)(28,29,30)(34,35), (19,21,20)(25,27,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^4.A_4^2.C_2^4.C_2$
Order: \(39182082048\)\(\medspace = 2^{13} \cdot 3^{14} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(156728328192\)\(\medspace = 2^{15} \cdot 3^{14} \)
$\operatorname{Aut}(H)$ Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$12$
Möbius function not computed
Projective image not computed