Properties

Label 1632586752.bbj
Order \( 2^{10} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34), (1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32), (1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22), (1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28) >;
 
Copy content gap:G := Group( (1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34), (1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32), (1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22), (1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28) );
 
Copy content sage:G = PermutationGroup(['(1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34)', '(1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32)', '(1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22)', '(1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5341670459052260557547154663188768739273104888078778067502657381404739336956172483130732388296535741987637734633531317363871381522251576444413350688062511300261051063119643538674808674494146698820591813417167016258200470836788642121367889351375337075771520425628262387196540504231028308207219886704208208295885377155154498014226767554058503972521597754208107371057422728323897240744018729667175384588353559053948603285188314208769843993727282302886723640423513720589957167873156756383034442086056057477903337892965358286894430008373975488840584411024919079238789289784966043705937747180720121015430295022640923111596258107660154858972583786718129228311781419988014390478204309938423940806975874175144948901859023500585087053545515440086863743343233738587968659015084321692871307858703279737552228116134558892352793089331849351548470528178949898297591825557700462429509050426291401132340079305713889741196254822638595097473909943660151655040293450439043637068739667398870745079186466793340086818883519622756608046795344697621273140067906379636974969867685799904258909484828545091643076327126432648799881018976158943982635403378612234817986963630791690415294654279570676382414829522196512968992816628015528905412303344190492267859827892711843992291268769114159414946049576047235732460897778804142282386019723289762631370469119276005649172273430881514049260491055494264055843798215526549887292576444388469170862718975492611728061006629198461851884026383603787042334541480895407680587927568273450104245235861078514231295107629546820236162608948464920856169096843270611485246908618999665286575726493891102486650988056448325778536277406426541294430295122411561048928935607442070497640899288565585526820887863645373791955964462864568044855200095712205860926387750029433196679655283320300387727113248154060044380539674815492172479,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 

Group information

Description:$C_3^6.(C_3^6.C_2^7:S_4)$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1375839 1371248 56477088 352701648 67184640 810834624 342641664 1632586752
Conjugacy classes   1 37 487 44 2093 19 462 27 3170
Divisions 1 37 487 44 2093 19 460 27 3168
Autjugacy classes 1 27 233 28 1043 9 232 12 1585

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 21888680112, 28696407149, 116, 58831282598, 19407160020, 5395665315, 62982591722, 18152089213, 6747577416, 103329654184, 4953306477, 12797980670, 9142710983, 326, 184811547461, 99668433340, 18725506539, 16688665754, 116850853062, 36074908745, 10005998551, 19179661527, 10218318152, 3883517668, 466, 234465762439, 9758269278, 9907702325, 15973277068, 10255864227, 302624497880, 80868284311, 21166617384, 26398039397, 12149509888, 3428520009, 937348724, 261297718, 606, 208694154249, 78120839552, 67733516095, 66318, 1738419221, 579473187, 347781511450, 43582763697, 12808389188, 31682396671, 9891779934, 7767038393, 1870610296, 1179089973, 315381392, 4919296, 746, 118434576395, 89779311394, 15594154617, 1043518544, 5537253415, 785560158, 2918819381, 1455117436, 440151747, 611328, 185512631628, 188640047267, 78728671066, 33667122609, 1457402648, 5078046295, 723018030, 1581048785, 491043112, 70918833, 80384000, 33197338, 886, 524979608845, 35468181540, 96631236635, 6261349330, 18520306665, 3171849559, 502606133, 10997187, 27475238, 223095591374, 76768715557, 113866261980, 25330242323, 3640451146, 983217009, 2001756392, 1819107895, 535128318, 39557944, 1496877, 13192400, 8658088, 1026, 400529221647, 69787920422, 58721283133, 22892628, 5568611435, 77580487, 15314933, 4853475, 210591373840, 241567132071, 156794253182, 34770197461, 12386654892, 11830258787, 252354682, 665344568, 82344823, 41637054, 13386545, 12767224, 9508653, 1377440, 191560, 1166, 356951992337, 322647515176, 4867527231, 154524758, 4378199195, 729700041, 68856727, 179118, 10275, 324913877010, 354273564713, 145819782208, 56517398871, 978656366, 4832115420, 523309450, 70039112, 1132975, 21490206, 63268, 333380, 403824476179, 372404459562, 46099860545, 58976916568, 5193746077, 479312843, 72533049, 1788752, 22819975, 99701, 370227, 233641304084, 100054725163, 186047705154, 3785854553, 1892927344, 2997134942, 270418380, 78872218, 7824873, 2608496, 435042, 52552, 367150620693, 384148334636, 203122681411, 15297942618, 7648971377, 22296635, 6448761, 164333, 671718749206, 179480406573, 197250743876, 39983258971, 19991629554, 777452462, 61702812, 64787963, 17025634, 3599660, 514578]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(5341670459052260557547154663188768739273104888078778067502657381404739336956172483130732388296535741987637734633531317363871381522251576444413350688062511300261051063119643538674808674494146698820591813417167016258200470836788642121367889351375337075771520425628262387196540504231028308207219886704208208295885377155154498014226767554058503972521597754208107371057422728323897240744018729667175384588353559053948603285188314208769843993727282302886723640423513720589957167873156756383034442086056057477903337892965358286894430008373975488840584411024919079238789289784966043705937747180720121015430295022640923111596258107660154858972583786718129228311781419988014390478204309938423940806975874175144948901859023500585087053545515440086863743343233738587968659015084321692871307858703279737552228116134558892352793089331849351548470528178949898297591825557700462429509050426291401132340079305713889741196254822638595097473909943660151655040293450439043637068739667398870745079186466793340086818883519622756608046795344697621273140067906379636974969867685799904258909484828545091643076327126432648799881018976158943982635403378612234817986963630791690415294654279570676382414829522196512968992816628015528905412303344190492267859827892711843992291268769114159414946049576047235732460897778804142282386019723289762631370469119276005649172273430881514049260491055494264055843798215526549887292576444388469170862718975492611728061006629198461851884026383603787042334541480895407680587927568273450104245235861078514231295107629546820236162608948464920856169096843270611485246908618999665286575726493891102486650988056448325778536277406426541294430295122411561048928935607442070497640899288565585526820887863645373791955964462864568044855200095712205860926387750029433196679655283320300387727113248154060044380539674815492172479,1632586752); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.20; m := G.21; n := G.22; o := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5341670459052260557547154663188768739273104888078778067502657381404739336956172483130732388296535741987637734633531317363871381522251576444413350688062511300261051063119643538674808674494146698820591813417167016258200470836788642121367889351375337075771520425628262387196540504231028308207219886704208208295885377155154498014226767554058503972521597754208107371057422728323897240744018729667175384588353559053948603285188314208769843993727282302886723640423513720589957167873156756383034442086056057477903337892965358286894430008373975488840584411024919079238789289784966043705937747180720121015430295022640923111596258107660154858972583786718129228311781419988014390478204309938423940806975874175144948901859023500585087053545515440086863743343233738587968659015084321692871307858703279737552228116134558892352793089331849351548470528178949898297591825557700462429509050426291401132340079305713889741196254822638595097473909943660151655040293450439043637068739667398870745079186466793340086818883519622756608046795344697621273140067906379636974969867685799904258909484828545091643076327126432648799881018976158943982635403378612234817986963630791690415294654279570676382414829522196512968992816628015528905412303344190492267859827892711843992291268769114159414946049576047235732460897778804142282386019723289762631370469119276005649172273430881514049260491055494264055843798215526549887292576444388469170862718975492611728061006629198461851884026383603787042334541480895407680587927568273450104245235861078514231295107629546820236162608948464920856169096843270611485246908618999665286575726493891102486650988056448325778536277406426541294430295122411561048928935607442070497640899288565585526820887863645373791955964462864568044855200095712205860926387750029433196679655283320300387727113248154060044380539674815492172479,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5341670459052260557547154663188768739273104888078778067502657381404739336956172483130732388296535741987637734633531317363871381522251576444413350688062511300261051063119643538674808674494146698820591813417167016258200470836788642121367889351375337075771520425628262387196540504231028308207219886704208208295885377155154498014226767554058503972521597754208107371057422728323897240744018729667175384588353559053948603285188314208769843993727282302886723640423513720589957167873156756383034442086056057477903337892965358286894430008373975488840584411024919079238789289784966043705937747180720121015430295022640923111596258107660154858972583786718129228311781419988014390478204309938423940806975874175144948901859023500585087053545515440086863743343233738587968659015084321692871307858703279737552228116134558892352793089331849351548470528178949898297591825557700462429509050426291401132340079305713889741196254822638595097473909943660151655040293450439043637068739667398870745079186466793340086818883519622756608046795344697621273140067906379636974969867685799904258909484828545091643076327126432648799881018976158943982635403378612234817986963630791690415294654279570676382414829522196512968992816628015528905412303344190492267859827892711843992291268769114159414946049576047235732460897778804142282386019723289762631370469119276005649172273430881514049260491055494264055843798215526549887292576444388469170862718975492611728061006629198461851884026383603787042334541480895407680587927568273450104245235861078514231295107629546820236162608948464920856169096843270611485246908618999665286575726493891102486650988056448325778536277406426541294430295122411561048928935607442070497640899288565585526820887863645373791955964462864568044855200095712205860926387750029433196679655283320300387727113248154060044380539674815492172479,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 
Permutation group:Degree $36$ $\langle(1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34), (1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32), (1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22), (1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28) >;
 
Copy content gap:G := Group( (1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34), (1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32), (1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22), (1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28) );
 
Copy content sage:G = PermutationGroup(['(1,13,22)(2,15,24)(3,14,23)(4,16,33,7,20,30)(5,17,32,8,21,29)(6,18,31,9,19,28)(10,26,36)(11,27,35)(12,25,34)', '(1,9,14,3,8,15)(2,7,13)(4,11,35)(5,10,34,6,12,36)(16,24,30,17,23,29)(18,22,28)(19,25,33,21,26,31)(20,27,32)', '(1,13,5,2,15,6)(3,14,4)(7,36,12,9,34,11)(8,35,10)(16,28,26)(17,29,25)(18,30,27)(19,31,23,21,33,24,20,32,22)', '(1,4,18,27,2,6,17,25,3,5,16,26)(7,20,24,34,8,21,23,36,9,19,22,35)(10,33,12,32)(11,31)(13,29,14,30)(15,28)'])
 
Transitive group: 36T96782 36T96922 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^7:S_4)$ $(C_3^{12}.C_2^6.C_2)$ . $S_4$ $C_3^6$ . $(C_3^6.C_2^7:S_4)$ (2) $(C_3^{12}.C_2^6.C_2^3)$ . $S_3$ all 58

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 123 normal subgroups (51 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3170 \times 3170$ character table is not available for this group.

Rational character table

The $3168 \times 3168$ rational character table is not available for this group.