Properties

Label 3888.jh.9.c1.b1
Order $ 2^{4} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{36}:C_6$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,9,5,4,8,7,2,6,3)(10,11)(12,13), (12,13), (10,11)(12,13), (10,13)(11,12), (1,4,2)(6,8,9), (2,4)(3,6,7,9,5,8)(10,12,11,13), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times D_{36}:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$D_{18}:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{18}:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{36}:C_6$
Normal closure:$C_3^3:S_3\times S_4$
Core:$C_{18}:C_6$
Minimal over-subgroups:$C_3^3:S_3\times D_4$$C_6^2.S_3^2$
Maximal under-subgroups:$D_{18}:C_6$$D_{18}:C_6$$C_{36}:C_6$$C_{36}:C_6$$C_{36}:C_6$$D_{18}:C_6$$D_{18}:C_6$$C_{12}:D_6$$D_4\times D_9$
Autjugate subgroups:3888.jh.9.c1.a1

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$C_3^3:S_3\times S_4$