Properties

Label 3888.jh.8.c1.a1
Order $ 2 \cdot 3^{5} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:S_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(6,8,9), (2,4)(3,6,7,9,5,8)(10,12), (1,9,5,4,8,7,2,6,3)(10,12,11), (1,4,2)(6,8,9), (10,11,12), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^6.S_3^3$, of order \(157464\)\(\medspace = 2^{3} \cdot 3^{9} \)
$\operatorname{res}(S)$$C_3^3.S_3^3$, of order \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:S_3^2$
Normal closure:$C_3\wr C_3:S_4$
Core:$C_3\wr C_3$
Minimal over-subgroups:$C_3\wr C_3:S_4$$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^4:C_3$$C_3^3:C_6$$C_3^3:S_3$$C_3^3:S_3$$C_3^3:C_6$$C_3^3.S_3$$C_3^3.S_3$$C_3^3:S_3$$C_3^3:S_3$$C_3^3:S_3$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_3^3:S_3\times S_4$