Properties

Label 3888.jh.2.c1.a1
Order $ 2^{3} \cdot 3^{5} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\wr C_3:S_4$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(2\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(10,13)(11,12), (6,8,9), (2,4)(3,6,7,9,5,8)(10,11,12,13), (1,4,2)(6,8,9), (10,11)(12,13), (11,13,12), (1,9,5,4,8,7,2,6,3)(10,11,13), (3,7,5)(6,9,8)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^3:S_3\times S_4$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2.C_3^5.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$C_3^3:S_3\times S_4$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3:S_3\times S_4$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3^3:S_3\times S_4$
Maximal under-subgroups:$C_6^2.C_3^3$$C_3^3:S_4$$(C_3\times C_6^2):S_3$$C_3^3:S_4$$\He_3:S_4$$C_9:(C_3\times S_4)$$C_9:(C_3\times S_4)$$\He_3:S_4$$(C_3^2\times A_4):S_3$$(C_3^2\times A_4):S_3$$C_3^4:S_3$

Other information

Möbius function$-1$
Projective image$C_3^3:S_3\times S_4$