Properties

Label 3888.by.18.a1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,3,6)(2,5,7), (1,6)(2,5), (1,7)(2,6)(3,5)(10,11), (8,9)(11,12), (2,7)(3,6)(10,11,12), (1,3,6)(2,5,7)(4,9,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^3:(S_3\times S_4)$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3^4:S_3$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3^3$
Normal closure:$C_3^3:(S_3\times S_4)$
Core:$C_3$
Minimal over-subgroups:$C_3:S_3^3$
Maximal under-subgroups:$C_3:S_3^2$$C_3\times S_3^2$$C_3\times S_3^2$$C_3\times S_3^2$$C_3:S_3^2$$C_3:S_3^2$$C_3:S_3^2$$S_3\times D_6$$S_3\times D_6$$S_3\times D_6$

Other information

Number of subgroups in this conjugacy class$18$
Möbius function$0$
Projective image$C_3^3:(S_3\times S_4)$