Properties

Label 3840.fe.30.D
Order $ 2^{7} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(6,7)(14,15), (1,4,5,3)(6,7)(8,12)(9,13)(10,11), (1,5)(3,4)(6,7)(10,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^3:F_5\times S_4$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^{12}.C_4.C_2^3$, of order \(131072\)\(\medspace = 2^{17} \)
$\operatorname{res}(S)$$C_2^7:D_4$, of order \(1024\)\(\medspace = 2^{10} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2.D_4^2$
Normal closure:$C_2^3:F_5\times S_4$
Core:$C_2^3$
Minimal over-subgroups:$(C_2^3\times C_{20}):C_4$$C_2^2.D_4^2$
Maximal under-subgroups:$C_2^4\times C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^3.D_4$$C_2^2.C_4^2$$C_2^3.D_4$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$