Properties

Label 131072.m
Order \( 2^{17} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{6} \)
$\card{Z(G)}$ 8
$\card{\Aut(G)}$ \( 2^{34} \)
$\card{\mathrm{Out}(G)}$ \( 2^{20} \)
Perm deg. not computed
Trans deg. not computed
Rank $6$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64), (1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63), (1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57), (1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64), (1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57), (1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64), (1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63), (1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64), (1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57), (1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57), (1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64), (1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49), (1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63) >;
 
Copy content gap:G := Group( (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64), (1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63), (1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57), (1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64), (1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57), (1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64), (1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63), (1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64), (1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57), (1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57), (1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64), (1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49), (1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63) );
 
Copy content sage:G = PermutationGroup(['(1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64)', '(1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63)', '(1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57)', '(1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64)', '(1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)', '(1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57)', '(1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64)', '(1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63)', '(1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64)', '(1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64)', '(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)', '(1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57)', '(1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64)', '(1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49)', '(1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64)', '(1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5922431706100944378649314937231052884439552080249991938316902584234005348460715323038270766568028202334085679525865140159451032538619796478568127869017927087434820658743116175327282014626734027215091012567737130959176204882514,131072)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$C_2^{12}.C_4.C_2^3$
Order: \(131072\)\(\medspace = 2^{17} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(17179869184\)\(\medspace = 2^{34} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$4$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 9599 105088 16384 131072
Conjugacy classes   1 496 681 24 1202
Divisions 1 496 681 16 1194
Autjugacy classes 1 84 125 3 213

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $6$
Inequivalent generating 6-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid a^{2}=b^{4}=c^{2}=d^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1398285, 86, 1398372, 2125684, 2101901, 565, 242, 125687, 736888, 398945, 31014, 335909, 346, 39890, 435209, 217626, 723563, 361820, 180957, 69471, 11688, 1165, 502, 27040, 2728732, 39247, 17227404, 579933, 2408079, 1189944, 42546, 1525, 658, 12407, 417909, 21928]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.10, G.12, G.13, G.15, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "g", "g2", "h", "i", "i2", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(5922431706100944378649314937231052884439552080249991938316902584234005348460715323038270766568028202334085679525865140159451032538619796478568127869017927087434820658743116175327282014626734027215091012567737130959176204882514,131072); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.10; h := G.12; i := G.13; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5922431706100944378649314937231052884439552080249991938316902584234005348460715323038270766568028202334085679525865140159451032538619796478568127869017927087434820658743116175327282014626734027215091012567737130959176204882514,131072)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5922431706100944378649314937231052884439552080249991938316902584234005348460715323038270766568028202334085679525865140159451032538619796478568127869017927087434820658743116175327282014626734027215091012567737130959176204882514,131072)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $64$ $\langle(1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64), (1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63), (1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57), (1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64), (1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57), (1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64), (1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63), (1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64), (1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57), (1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57), (1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64), (1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49), (1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63) >;
 
Copy content gap:G := Group( (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64), (1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63), (1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57), (1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64), (1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64), (1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57), (1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64), (1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63), (1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64), (1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57), (1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57), (1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64), (1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49), (1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64), (1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63) );
 
Copy content sage:G = PermutationGroup(['(1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,64)', '(1,61)(3,7)(5,9)(11,15)(13,17)(19,23)(21,25)(27,31)(29,33)(35,39)(37,41)(43,47)(45,49)(51,55)(53,57)(59,63)', '(1,41)(4,28)(5,29)(8,32)(9,33)(12,20)(13,21)(16,24)(17,25)(36,60)(37,61)(40,64)(44,52)(45,53)(48,56)(49,57)', '(1,56,49,40)(2,3,18,19)(4,5,20,21)(6,7,22,23)(8,9,24,25)(10,11,26,27)(12,13,28,29)(14,15,30,31)(16,17,32,33)(34,59,50,43)(35,42,51,58)(36,61,52,45)(37,44,53,60)(38,63,54,47)(39,46,55,62)(41,48,57,64)', '(1,57)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(9,17)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)(25,33)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(50,58)(51,59)(52,60)(53,61)(54,62)(55,63)(56,64)', '(1,41)(6,30)(7,31)(8,32)(9,33)(14,22)(15,23)(16,24)(17,25)(38,62)(39,63)(40,64)(46,54)(47,55)(48,56)(49,57)', '(1,57)(6,14)(7,15)(8,16)(9,17)(22,30)(23,31)(24,32)(25,33)(38,46)(39,47)(40,48)(41,49)(54,62)(55,63)(56,64)', '(1,57)(3,11)(5,13)(7,15)(9,17)(19,27)(21,29)(23,31)(25,33)(35,43)(37,45)(39,47)(41,49)(51,59)(53,61)(55,63)', '(1,61)(4,8)(5,9)(12,16)(13,17)(20,24)(21,25)(28,32)(29,33)(36,40)(37,41)(44,48)(45,49)(52,56)(53,57)(60,64)', '(1,61)(2,6)(3,7)(4,8)(5,9)(10,14)(11,15)(12,16)(13,17)(18,22)(19,23)(20,24)(21,25)(26,30)(27,31)(28,32)(29,33)(34,38)(35,39)(36,40)(37,41)(42,46)(43,47)(44,48)(45,49)(50,54)(51,55)(52,56)(53,57)(58,62)(59,63)(60,64)', '(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)', '(1,41)(2,26)(3,27)(4,28)(5,29)(6,30)(7,31)(8,32)(9,33)(10,18)(11,19)(12,20)(13,21)(14,22)(15,23)(16,24)(17,25)(34,58)(35,59)(36,60)(37,61)(38,62)(39,63)(40,64)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56)(49,57)', '(1,41)(3,27)(5,29)(7,31)(9,33)(11,19)(13,21)(15,23)(17,25)(35,59)(37,61)(39,63)(43,51)(45,53)(47,55)(49,57)', '(1,57)(4,12)(5,13)(8,16)(9,17)(20,28)(21,29)(24,32)(25,33)(36,44)(37,45)(40,48)(41,49)(52,60)(53,61)(56,64)', '(1,63,41,39)(2,4,26,28)(3,5,27,29)(6,8,30,32)(7,9,31,33)(10,12,18,20)(11,13,19,21)(14,16,22,24)(15,17,23,25)(34,60,58,36)(35,61,59,37)(38,64,62,40)(42,52,50,44)(43,53,51,45)(46,56,54,48)(47,57,55,49)', '(1,33)(6,38)(7,39)(8,40)(9,41)(14,46)(15,47)(16,48)(17,49)(22,54)(23,55)(24,56)(25,57)(30,62)(31,63)(32,64)', '(1,33)(3,35)(5,37)(7,39)(9,41)(11,43)(13,45)(15,47)(17,49)(19,51)(21,53)(23,55)(25,57)(27,59)(29,61)(31,63)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^{12}.D_4)$ . $C_2^2$ (4) $(C_2^{10}.C_2^6)$ . $C_2$ $(C_2^{12}.C_4)$ . $C_2^3$ (8) $(C_2^9.C_2^6)$ . $C_2^2$ all 15
Aut. group: $\Aut(C_2^3.C_2^4)$ $\Aut(C_2^4.D_4)$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{6} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{21}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24018 normal subgroups (89 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: not computed
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{12}.C_4.C_2^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1202 \times 1202$ character table is not available for this group.

Rational character table

The $1194 \times 1194$ rational character table is not available for this group.