Properties

Label 3840.bf.48.DE
Order $ 2^{4} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_{10}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 5 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $C_4\times A_8$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{res}(S)$$C_4^2:C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(320\)\(\medspace = 2^{6} \cdot 5 \)
$W$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^3:D_4\times F_5$
Normal closure:$C_2\times C_{10}\times S_4$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{20}:C_2^3$$C_2^3\times D_{10}$$C_{20}:C_2^3$$C_2^3:D_{10}$$C_2^3:D_{10}$$C_2^3:D_{10}$$C_{20}:C_2^3$
Maximal under-subgroups:$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^2\times C_{10}$$C_2^4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times S_4$