Properties

Label 3840.bf.384.C
Order $ 2 \cdot 5 $
Index $ 2^{7} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2\times \GL(2,\mathbb{Z}/4)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^6.C_2^4.S_3^2$
Outer Automorphisms: $C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times \GL(2,\mathbb{Z}/4)$
Normalizer:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Minimal over-subgroups:$C_3\times D_5$$D_{10}$$D_{10}$$F_5$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$D_{10}$$F_5$$F_5$$F_5$$F_5$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$