Properties

Label 3840.bf.320.A
Order $ 2^{2} \cdot 3 $
Index $ 2^{6} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 16 & 5 \\ 15 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Order: \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_{10}.C_2^4$
Order: \(320\)\(\medspace = 2^{6} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Automorphism Group: $F_5\times C_2^5:D_4$, of order \(5120\)\(\medspace = 2^{10} \cdot 5 \)
Outer Automorphisms: $D_4^2$, of order \(64\)\(\medspace = 2^{6} \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_5\times A_4).C_2^4.C_2^6$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2560\)\(\medspace = 2^{9} \cdot 5 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times F_5$
Normalizer:$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$
Complements:$D_{10}.C_2^4$ $D_{10}.C_2^4$ $D_{10}.C_2^4$ $D_{10}.C_2^4$ $D_{10}.C_2^4$ $D_{10}.C_2^4$
Minimal over-subgroups:$C_5\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$C_2\times A_4$$S_4$$S_4$
Maximal under-subgroups:$C_2^2$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times F_5\times \GL(2,\mathbb{Z}/4)$