Properties

Label 384.6844.1.a1.a1
Order $ 2^{7} \cdot 3 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_4^2).D_6$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{2}d^{6}, c^{2}, b, d^{3}, d^{4}, d^{6}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_4^2).D_6$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\operatorname{Aut}(H)$ Group of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$W$$C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times C_4^2).D_6$
Complements:$C_1$
Maximal under-subgroups:$(C_2\times C_4^2):S_3$$D_6:C_4^2$$(C_2\times C_4).D_{12}$$(C_2\times D_6).Q_8$$(C_4\times D_6):C_4$$(C_2\times D_6).D_4$$(C_2\times C_4).D_{12}$$C_4^2:C_{12}$$C_4\times C_6.D_4$$C_2^2.(C_4\times D_6)$$C_6.(C_4\times D_4)$$C_6.(C_4\times D_4)$$(C_2\times C_{12}).Q_8$$(C_2\times C_4).D_{12}$$C_2^2.(S_3\times D_4)$$C_2^3.C_2^4$

Other information

Möbius function$1$
Projective image$C_2^2\times D_6$