Properties

Label 384.660.96.e1.d1
Order $ 2^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ab^{7}c^{13}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_8.(S_3\times C_8)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2^6\times C_4).C_2^3)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_8$
Normalizer:$C_8\times Q_8$
Normal closure:$C_3:Q_8$
Core:$C_2$
Minimal over-subgroups:$C_3:C_4$$C_2\times C_4$$Q_8$$Q_8$
Maximal under-subgroups:$C_2$
Autjugate subgroups:384.660.96.e1.a1384.660.96.e1.b1384.660.96.e1.c1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$C_8\times D_{12}$