Subgroup ($H$) information
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| Exponent: | \(2\) | 
| Generators: | $c^{12}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_8.(S_3\times C_8)$ | 
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_8\times D_{12}$ | 
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Automorphism Group: | $C_6.(D_4\times C_2^5)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) | 
| Outer Automorphisms: | $D_4\times C_2^4$, of order \(128\)\(\medspace = 2^{7} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:((C_2^6\times C_4).C_2^3)$ | 
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6144\)\(\medspace = 2^{11} \cdot 3 \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_8.(S_3\times C_8)$ | |||||||
| Normalizer: | $C_8.(S_3\times C_8)$ | |||||||
| Minimal over-subgroups: | $C_6$ | $C_2^2$ | $C_4$ | $C_4$ | $C_4$ | $C_4$ | $C_4$ | $C_4$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_8\times D_{12}$ | 
