Properties

Label 384.5614.3.a1.a1
Order $ 2^{7} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}.D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(3\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 4 & 5 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 7 & 16 \\ 16 & 10 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 14 & 16 \end{array}\right), \left(\begin{array}{rr} 16 & 0 \\ 0 & 16 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{16}.S_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$C_{16}.D_4$
Normal closure:$C_{16}.S_4$
Core:$\OD_{32}:C_2$
Minimal over-subgroups:$C_{16}.S_4$
Maximal under-subgroups:$\OD_{32}:C_2$$\OD_{32}:C_2$$\OD_{32}:C_2$$C_4\times C_{16}$$C_8.C_8$$D_8:C_4$$\OD_{32}:C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$S_4$