Subgroup ($H$) information
Description: | $C_{16}.D_4$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Index: | \(3\) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left(\begin{array}{rr}
3 & 0 \\
0 & 3
\end{array}\right), \left(\begin{array}{rr}
4 & 5 \\
0 & 13
\end{array}\right), \left(\begin{array}{rr}
7 & 16 \\
16 & 10
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
14 & 16
\end{array}\right), \left(\begin{array}{rr}
16 & 0 \\
0 & 16
\end{array}\right), \left(\begin{array}{rr}
9 & 0 \\
0 & 9
\end{array}\right), \left(\begin{array}{rr}
13 & 0 \\
0 & 13
\end{array}\right)$
|
Nilpotency class: | $3$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{16}.S_4$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^5.D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_4^2.C_2^4$, of order \(256\)\(\medspace = 2^{8} \) |
$\operatorname{res}(S)$ | $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | $1$ |
$W$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $S_4$ |