Properties

Label 384.3981.3.a1.a1
Order $ 2^{7} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3.Q_{16}$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(3\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b, c^{3}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times C_{48}.C_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2\times (C_2^2\times C_8).C_2^5)$
$\operatorname{Aut}(H)$ $C_2^8.C_2^3$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(S)$$C_2^8.C_2^3$, of order \(2048\)\(\medspace = 2^{11} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_8$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2^3.Q_{16}$
Normal closure:$C_2\times C_{48}.C_4$
Core:$C_2^2\times C_{16}$
Minimal over-subgroups:$C_2\times C_{48}.C_4$
Maximal under-subgroups:$C_2^2\times C_{16}$$C_2^3.Q_8$$C_2^3.Q_8$$C_{16}.C_4$$C_{16}.C_4$$C_{16}.C_4$$C_{16}.C_4$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_{24}$