Subgroup ($H$) information
| Description: | $C_{16}$ | 
| Order: | \(16\)\(\medspace = 2^{4} \) | 
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(16\)\(\medspace = 2^{4} \) | 
| Generators: | $ac^{3}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
| Description: | $C_2\times C_{48}.C_4$ | 
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) | 
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_6:C_4$ | 
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^2\times (C_2^2\times C_8).C_2^5)$ | 
| $\operatorname{Aut}(H)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| $\operatorname{res}(S)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(768\)\(\medspace = 2^{8} \cdot 3 \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Möbius function | $0$ | 
| Projective image | $C_2^2.D_{24}$ | 
