Subgroup ($H$) information
| Description: | $C_2\times C_{16}$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(16\)\(\medspace = 2^{4} \) |
| Generators: |
$a, c^{3}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_2\times C_{48}.C_4$ |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_3:C_4$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2^2\times (C_2^2\times C_8).C_2^5)$ |
| $\operatorname{Aut}(H)$ | $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_2^2\times C_{48}$ | ||
| Normalizer: | $C_2\times C_{48}.C_4$ | ||
| Minimal over-subgroups: | $C_2\times C_{48}$ | $C_2^2\times C_{16}$ | |
| Maximal under-subgroups: | $C_2\times C_8$ | $C_{16}$ | $C_{16}$ |
Other information
| Möbius function | $0$ |
| Projective image | $C_{24}:C_4$ |