Properties

Label 384.17956.12.bq1.b1
Order $ 2^{5} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 50 & 0 \\ 0 & 35 \end{array}\right), \left(\begin{array}{rr} 4 & 34 \\ 0 & 38 \end{array}\right), \left(\begin{array}{rr} 22 & 6 \\ 24 & 46 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $\GL(2,3):D_4$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_8:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_8:C_2^2$
Normal closure:$\GL(2,3):C_2^2$
Core:$Q_8$
Minimal over-subgroups:$\GL(2,3):C_2$$D_8:C_2^2$
Maximal under-subgroups:$D_4:C_2$$D_8$$\SD_{16}$$C_2\times C_8$$\SD_{16}$$D_4:C_2$$Q_{16}$
Autjugate subgroups:384.17956.12.bq1.a1

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$D_4\times S_4$