Properties

Label 384.1698.6.f1.a1
Order $ 2^{6} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times C_{16}$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $b, c^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\OD_{32}.D_6$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times C_{12}:C_2^4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^5.D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\operatorname{res}(S)$$C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{16}$
Normalizer:$C_{16}.D_4$
Normal closure:$C_{48}:C_4$
Core:$C_2\times C_{16}$
Minimal over-subgroups:$C_{48}:C_4$$C_{16}.D_4$
Maximal under-subgroups:$C_2\times C_{16}$$C_4\times C_8$$C_2\times C_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$S_3\times D_4$