Properties

Label 384.1673.8.o1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{24}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $abc, c^{16}, b^{2}c^{18}, c^{12}, c^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_2^3.D_{24}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2\times C_4^2).C_2^6)$
$\operatorname{Aut}(H)$ $D_8:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$D_8:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$D_{24}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_{24}:C_4$
Normal closure:$C_2\times D_{24}$
Core:$C_{24}$
Minimal over-subgroups:$C_2\times D_{24}$
Maximal under-subgroups:$C_{24}$$D_{12}$$D_8$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2^2.D_{24}$