Subgroup ($H$) information
Description: | $C_2\times D_{24}$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$abc, c^{16}, c^{24}, b^{2}, c^{18}, c^{12}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_2^3.D_{24}$ |
Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:((C_2\times C_4^2).C_2^6)$ |
$\operatorname{Aut}(H)$ | $S_3\times C_4.D_4^2$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{24}:C_2^4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2\times D_{24}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Centralizer: | $C_2^2$ | ||||
Normalizer: | $C_2^3.D_{24}$ | ||||
Minimal over-subgroups: | $C_{24}:D_4$ | $D_{24}:C_4$ | $D_{24}:C_4$ | ||
Maximal under-subgroups: | $C_2\times C_{24}$ | $C_2\times D_{12}$ | $D_{24}$ | $D_{24}$ | $C_2\times D_8$ |
Other information
Möbius function | $2$ |
Projective image | $C_2\times D_{24}$ |