Properties

Label 384.1653.4.g1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{48}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a^{3}c^{27}, c^{24}, c^{12}, c^{18}, c^{16}, a^{2}c^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_4^2.D_{12}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_2^2\times D_4).C_2^6)$
$\operatorname{Aut}(H)$ $D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{48}$
Normalizer:$C_4^2.D_{12}$
Minimal over-subgroups:$D_{24}:C_4$$C_{16}:C_{12}$$C_6.Q_{32}$
Maximal under-subgroups:$C_2\times C_{24}$$C_{48}$$C_2\times C_{16}$

Other information

Möbius function$2$
Projective image$C_2\times D_{24}$