Properties

Label 384.1383.3.a1.a1
Order $ 2^{7} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2\times C_4).D_8$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(3\)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b, d^{3}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^2.(S_3\times D_8)$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^7.C_2^5)$
$\operatorname{Aut}(H)$ $(C_2^6\times C_4).C_2^4$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{\operatorname{res}(S)}$\(2048\)\(\medspace = 2^{11} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$(C_2\times C_4).D_8$
Normal closure:$C_2^2.(S_3\times D_8)$
Core:$C_4.C_4^2$
Minimal over-subgroups:$C_2^2.(S_3\times D_8)$
Maximal under-subgroups:$C_4.C_4^2$$C_2^3.C_2^3$$C_4.C_4^2$$C_2^3.C_2^3$$C_2^2.D_8$$C_4^2.C_4$$C_4.C_4^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$S_3\times D_4$