Properties

Label 37056.v.8.a1.a1
Order $ 2^{3} \cdot 3 \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{4632}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Generators: $a^{48}, a^{96}, b, a^{64}, a^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{193}:C_{192}$
Order: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4\times D_{12}:D_4$, of order \(1185792\)\(\medspace = 2^{11} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2^3\times C_{192}$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_{9264}$
Normalizer:$C_{193}:C_{192}$
Minimal over-subgroups:$C_{9264}$
Maximal under-subgroups:$C_{2316}$$C_{1544}$$C_{24}$

Other information

Möbius function$0$
Projective image$C_{193}:C_8$