Properties

Label 36303120.b.2205.D
Order $ 2^{4} \cdot 3 \cdot 7^{3} $
Index $ 3^{2} \cdot 5 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_7^3:S_4$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Index: \(2205\)\(\medspace = 3^{2} \cdot 5 \cdot 7^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(2,7)(3,4)(5,6)(9,14)(10,11)(12,13)(15,28,17,26,21,25,19,27,20,23,16,24,18,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7^5:S_6.C_3$
Order: \(36303120\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5:(C_6\times S_6)$, of order \(72606240\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)
$\operatorname{Aut}(H)$ $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^3:(C_3\times S_4)$, of order \(24696\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_7^3:(C_6\times S_4)$
Normal closure:$C_7^5:S_6$
Core:$C_1$

Other information

Number of subgroups in this autjugacy class$735$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:S_6.C_3$