Properties

Label 36303120.b.3.a1
Order $ 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{5} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^5:S_6$
Order: \(12101040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{5} \)
Index: \(3\)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\langle(8,11,9,13,12,14,10)(22,26,27,24,28,25,23)(36,37,40,38,39,41,42), (1,6,3,2,7,4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, nonabelian, and nonsolvable. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_7^5:S_6.C_3$
Order: \(36303120\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5:(C_6\times S_6)$, of order \(72606240\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)
$\operatorname{Aut}(H)$ $C_7^5:(C_6\times S_6)$, of order \(72606240\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)
$W$$C_7^5:S_6.C_3$, of order \(36303120\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 7^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_7^5:S_6.C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:S_6.C_3$