Properties

Label 36300.o.20.a1
Order $ 3 \cdot 5 \cdot 11^{2} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{15}$
Order: \(1815\)\(\medspace = 3 \cdot 5 \cdot 11^{2} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Generators: $bcd^{20}, cd^{100}, d^{10}, d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{60}.C_4.C_2^2$
$\card{W}$\(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_6\times C_5^2)$
Complements:$C_2\times C_{10}$
Minimal over-subgroups:$C_5\times C_{11}^2:C_{15}$$C_{10}\times C_{11}^2:C_3$$C_5\times C_{11}^2:S_3$
Maximal under-subgroups:$C_{11}\times C_{55}$$C_{11}^2:C_3$$C_{15}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_3^4:(D_4\times D_6)$