Properties

Label 36300.o.10.d1
Order $ 2 \cdot 3 \cdot 5 \cdot 11^{2} $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: not computed
Generators: $a^{5}d^{55}, bcd^{20}, cd^{20}, a^{2}d^{44}, d^{10}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, a direct factor, nonabelian, solvable, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{15}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(3630\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_6\times C_5^2)$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$C_5\times C_{11}^2:(C_5\times S_3)$$C_2\times C_{11}^2:(C_5\times S_3)$
Maximal under-subgroups:$C_{11}^2:C_{15}$$C_{11}:F_{11}$$C_{11}^2:S_3$$C_5\times S_3$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$10$
Möbius function$1$
Projective image$C_{11}^2:(D_6\times C_5^2)$