Properties

Label 3557376.a.37056._.A
Order $ 2^{5} \cdot 3 $
Index $ 2^{6} \cdot 3 \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{96}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Generators: $b^{579}, b^{9264}, b^{4632}, b^{6176}, b^{1158}, b^{2316}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{18528}.C_{192}$
Order: \(3557376\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $F_{193}$
Order: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Automorphism Group: $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(113836032\)\(\medspace = 2^{16} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_8$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed