Properties

Label 350.3.7.a1.a1
Order $ 2 \cdot 5^{2} $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{25}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(7\)
Exponent: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Generators: $a, b^{105}, b^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{175}$
Order: \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \)
Exponent: \(350\)\(\medspace = 2 \cdot 5^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times D_{25}.C_{10}$
$\operatorname{Aut}(H)$ $C_{25}:C_{20}$, of order \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
$\operatorname{res}(S)$$C_{25}:C_{20}$, of order \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{25}$, of order \(50\)\(\medspace = 2 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{25}$
Normal closure:$D_{175}$
Core:$C_{25}$
Minimal over-subgroups:$D_{175}$
Maximal under-subgroups:$C_{25}$$D_5$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_{175}$