Properties

Label 34992.iy.27.b1
Order $ 2^{4} \cdot 3^{4} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{3}, c^{2}f^{2}, b^{6}, b^{9}d^{2}e^{2}, b^{8}c^{3}d^{4}ef, d^{3}ef^{2}, c^{3}df, a^{2}d^{3}ef^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^5.(C_6\times S_4)$
Order: \(34992\)\(\medspace = 2^{4} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(D_6\times S_4)$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2.S_3^2$
Normal closure:$C_3^5.(C_6\times S_4)$
Core:$C_3^3$
Minimal over-subgroups:$C_3^5.(C_6\times S_4)$
Maximal under-subgroups:$S_3\times C_3^2.A_4$$C_3^3.S_4$$C_3^3.S_4$$C_6^2.D_6$$C_6^2:D_6$$C_6^2.D_6$$C_3^2.S_3^2$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_3^5.(C_6\times S_4)$