Properties

Label 34693789777920.a.32832._.A
Order $ 2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13 $
Index $ 2^{6} \cdot 3^{3} \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$\Sp(4,8)$
Order: \(1056706560\)\(\medspace = 2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13 \)
Index: \(32832\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 19 \)
Exponent: \(16380\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \)
Generators: $\left(\begin{array}{llll}\alpha^{57} & \alpha^{33} & \alpha & \alpha^{9} \\ \alpha^{22} & \alpha^{4} & \alpha^{54} & \alpha^{8} \\ \alpha^{29} & \alpha^{27} & \alpha^{57} & \alpha^{12} \\ \alpha^{45} & \alpha^{43} & \alpha^{50} & \alpha^{4} \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{6} & \alpha^{31} & \alpha^{26} & \alpha^{37} \\ \alpha^{11} & \alpha^{53} & \alpha^{35} & 0 \\ \alpha^{30} & \alpha^{56} & \alpha^{58} & \alpha^{9} \\ \alpha^{62} & \alpha & \alpha^{4} & \alpha^{46} \\ \end{array}\right)$ Copy content Toggle raw display
Derived length: $0$

The subgroup is maximal, nonabelian, and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $\SU(4,8)$
Order: \(34693789777920\)\(\medspace = 2^{18} \cdot 3^{7} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19 \)
Exponent: \(933660\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 19 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(208162738667520\)\(\medspace = 2^{19} \cdot 3^{8} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19 \)
$\operatorname{Aut}(H)$ Group of order \(6340239360\)\(\medspace = 2^{13} \cdot 3^{5} \cdot 5 \cdot 7^{2} \cdot 13 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$\Sp(4,8)$
Normal closure:$\SU(4,8)$
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$32832$
Möbius function not computed
Projective image not computed