Properties

Label 3456.qs.1.a1
Order $ 2^{7} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times Q_8:A_4^2$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: $1$
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(8,12)(9,15)(10,14)(11,13), (8,14)(9,11)(10,12)(13,15), (4,6)(5,7), (1,3,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_3\times Q_8:A_4^2$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_3^5.C_2^4$
$\operatorname{Aut}(H)$ $C_2^6.C_3^5.C_2^4$
$W$$C_2^2:A_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_8:A_4^2$
Complements:$C_1$
Maximal under-subgroups:$C_2^5:C_6^2$$C_6\times C_2^4:A_4$$C_3\times C_2^5:A_4$$Q_8:A_4^2$$C_6\times A_4^2$$C_6.A_4^2$$C_3^2\times Q_8:A_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^2:A_4^2$