Properties

Label 3456.ke.16.b1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3^2$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,5)(4,6), (1,3,5)(7,14)(8,13)(9,12)(10,11), (7,11,9)(10,12,14), (1,3,5)(2,6,4), (7,14)(8,13)(9,12)(10,11), (1,6)(2,3)(4,5)(7,14)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2\times D_6^2):A_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_2^4\times A_4).C_2^3$
$\operatorname{Aut}(H)$ $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{W}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6\times S_3^2$
Normal closure:$(C_2\times D_6^2):A_4$
Core:$C_6:S_3$
Minimal over-subgroups:$D_6^2:C_6$
Maximal under-subgroups:$C_3^2:D_6$$C_3^2\times D_6$$C_3^2\times D_6$$C_3\times S_3^2$$C_3\times S_3^2$$C_3\times S_3^2$$C_3\times S_3^2$$C_6\times D_6$$C_6\times D_6$$S_3\times D_6$

Other information

Number of subgroups in this conjugacy class$16$
Möbius function not computed
Projective image not computed