Subgroup ($H$) information
| Description: | $S_3\times D_6$ |
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,6)(2,3)(4,5)(7,14)(9,11)(10,12), (3,5)(4,6)(9,10)(11,12), (1,5,3)(2,4,6)(7,14)(8,13)(9,12)(10,11), (1,3,5), (7,14)(8,13)(9,12)(10,11)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.
Ambient group ($G$) information
| Description: | $C_3^2:C_2\wr S_4$ |
| Order: | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times (C_3\times C_2^4:C_3).D_6^2$ |
| $\operatorname{Aut}(H)$ | $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $24$ |
| Möbius function | $0$ |
| Projective image | $(C_6\times D_6):S_4$ |