Properties

Label 3456.kc.192.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,5,3)(2,4,6)(7,14)(8,13)(9,12)(10,11), (1,3,5), (7,14)(8,13)(9,12)(10,11)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^2:C_2\wr S_4$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^3:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times (C_3\times C_2^4:C_3).D_6^2$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_3^2\times Q_8:A_4$
Normalizer:$C_3^2:C_2\wr S_4$
Minimal over-subgroups:$C_3^2\times C_6$$C_6^2$$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_6:S_3$$C_3\times C_{12}$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$$C_6$

Other information

Möbius function$0$
Projective image$(C_6\times D_6):S_4$