Properties

Label 3456.cp.36.bn1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8:C_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $abc^{3}e^{3}, d^{6}, b^{2}e^{3}, bc^{3}d^{9}e^{3}, d^{6}e^{3}, e^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times D_4^2$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$S_3\times D_4:D_4$
Normal closure:$C_3\times C_6^2.D_4$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_3\times C_6^2.D_4$$C_3\times D_4:D_4$$D_{12}:D_4$$D_8:D_6$
Maximal under-subgroups:$D_4:C_6$$C_6\times D_4$$C_3\times \OD_{16}$$C_3\times D_8$$C_3\times \SD_{16}$$D_8:C_2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$D_6^2:D_6$