Properties

Label 96.183
Order 253 2^{5} \cdot 3
Exponent 233 2^{3} \cdot 3
Nilpotent yes
Solvable yes
#Gab\card{G^{\mathrm{ab}}} 233 2^{3} \cdot 3
#Z(G)\card{Z(G)} 23 2 \cdot 3
#Aut(G)\card{\Aut(G)} 27 2^{7}
#Out(G)\card{\mathrm{Out}(G)} 23 2^{3}
Perm deg. 1111
Trans deg. 2424
Rank 33

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SmallGroup(96, 183);
 
Copy content gap:G := SmallGroup(96, 183);
 
Copy content sage_gap:G = libgap.SmallGroup(96, 183)
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(1,5)(2,6)(3,7)(4,8)', '(3,4)(5,8)(6,7)', '(1,2)(3,4)', '(9,11,10)', '(1,4,2,3)(5,7,6,8)', '(1,2)(3,4)(5,6)(7,8)'])
 

Group information

Description:D8:C6D_8:C_6
Order: 9696=253\medspace = 2^{5} \cdot 3
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: 2424=233\medspace = 2^{3} \cdot 3
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:C2×D42C_2\times D_4^2, of order 128128=27\medspace = 2^{7}
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:C2C_2 x 5, C3C_3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:33
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:22
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, elementary for p=2p = 2 (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 15 2 8 30 8 16 16 96
Conjugacy classes   1 5 2 3 10 2 6 4 33
Divisions 1 5 1 3 5 2 3 2 22
Autjugacy classes 1 4 1 3 4 1 3 1 18

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8
Irr. complex chars.   24 6 3 0 33
Irr. rational chars. 8 10 3 1 22

Minimal presentations

Permutation degree:1111
Transitive degree:2424
Rank: 33
Inequivalent generating triples: 21842184

Minimal degrees of faithful linear representations

Over C\mathbb{C} Over R\mathbb{R} Over Q\mathbb{Q}
Irreducible 4 8 8
Arbitrary 4 6 6

Constructions

Show commands: Gap / Magma / SageMath


Presentation: a,b,ca2=b2=c24=[a,b]=1,ca=c13,cb=c19\langle a, b, c \mid a^{2}=b^{2}=c^{24}=[a,b]=1, c^{a}=c^{13}, c^{b}=c^{19} \rangle Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([6, -2, -2, -2, -2, -2, -3, 938, 692, 50, 681, 69, 88]); a,b,c := Explode([G.1, G.2, G.3]); AssignNames(~G, ["a", "b", "c", "c2", "c4", "c8"]);
 
Copy content gap:G := PcGroupCode(2234586497846286081,96); a := G.1; b := G.2; c := G.3;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2234586497846286081,96)'); a = G.1; b = G.2; c = G.3;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2234586497846286081,96)'); a = G.1; b = G.2; c = G.3;
 
Permutation group:Degree 1111 (1,5)(2,6)(3,7)(4,8),(3,4)(5,8)(6,7),(1,2)(3,4),(9,11,10),(1,4,2,3)(5,7,6,8),(1,2)(3,4)(5,6)(7,8)\langle(1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,2)(3,4), (9,11,10), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8)\rangle Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 11 | (1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,2)(3,4), (9,11,10), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) >;
 
Copy content gap:G := Group( (1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,2)(3,4), (9,11,10), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) );
 
Copy content sage:G = PermutationGroup(['(1,5)(2,6)(3,7)(4,8)', '(3,4)(5,8)(6,7)', '(1,2)(3,4)', '(9,11,10)', '(1,4,2,3)(5,7,6,8)', '(1,2)(3,4)(5,6)(7,8)'])
 
Matrix group:(100000001100010100000100000010000001),(111100110100110000011000000010000001),(010100010000011000110000000001000011)GL6(Z)\left\langle \left(\begin{array}{rrrrrr} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrrr} 1 & -1 & -1 & -1 & 0 & 0 \\ 1 & -1 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{6}(\Z)
Copy content comment:Define the group as a matrix group with coefficients in Z
 
Copy content magma:G := MatrixGroup< 6, Integers() | [[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, -1, -1, -1, 0, 0, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1]] >;
 
Copy content gap:G := Group([[[1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]], [[1, -1, -1, -1, 0, 0], [1, -1, 0, -1, 0, 0], [1, -1, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]], [[0, -1, 0, -1, 0, 0], [0, -1, 0, 0, 0, 0], [0, -1, 1, 0, 0, 0], [-1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -1, 1]]]);
 
Copy content sage:MS = MatrixSpace(Integers(), 6, 6) G = MatrixGroup([MS([[1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]), MS([[1, -1, -1, -1, 0, 0], [1, -1, 0, -1, 0, 0], [1, -1, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]), MS([[0, -1, 0, -1, 0, 0], [0, -1, 0, 0, 0, 0], [0, -1, 1, 0, 0, 0], [-1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -1, 1]])])
 
(1801),(23905),(1601),(11005),(10019),(11201)GL2(Z/24Z)\left\langle \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 23 & 9 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/24\Z)
Copy content comment:Define the group as a matrix group with coefficients in GLZN
 
Copy content magma:G := MatrixGroup< 2, Integers(24) | [[1, 8, 0, 1], [23, 9, 0, 5], [1, 6, 0, 1], [11, 0, 0, 5], [1, 0, 0, 19], [1, 12, 0, 1]] >;
 
Copy content gap:G := Group([[[ZmodnZObj(1,24), ZmodnZObj(8,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(23,24), ZmodnZObj(9,24)], [ZmodnZObj(0,24), ZmodnZObj(5,24)]],[[ZmodnZObj(1,24), ZmodnZObj(6,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(11,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(5,24)]],[[ZmodnZObj(1,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(19,24)]],[[ZmodnZObj(1,24), ZmodnZObj(12,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]]]);
 
Copy content sage:MS = MatrixSpace(Integers(24), 2, 2) G = MatrixGroup([MS([[1, 8], [0, 1]]), MS([[23, 9], [0, 5]]), MS([[1, 6], [0, 1]]), MS([[11, 0], [0, 5]]), MS([[1, 0], [0, 19]]), MS([[1, 12], [0, 1]])])
 
Transitive group: 24T114 more information
Direct product: C3C_3 ×\, \times\, (D8:C2)(D_8:C_2)
Semidirect product: D8D_8 \,\rtimes\, C6C_6 (2) SD16\SD_{16} \,\rtimes\, C6C_6 (2) OD16\OD_{16} \,\rtimes\, C6C_6 C24C_{24} \,\rtimes\, C22C_2^2 (2) all 16
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: C12C_{12} . D4D_4 C12C_{12} . C23C_2^3 (C2×C6)(C_2\times C_6) . D4D_4 D4D_4 . (C2×C6)(C_2\times C_6) (2) all 12

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: C22×C6C23×C3C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: C22C_{2}^{2}
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: 11
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 116 subgroups in 68 conjugacy classes, 40 normal (24 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: ZZ \simeq C6C_6 G/ZG/Z \simeq C2×D4C_2\times D_4
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: GG' \simeq C4C_4 G/GG/G' \simeq C22×C6C_2^2\times C_6
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: Φ\Phi \simeq C4C_4 G/ΦG/\Phi \simeq C22×C6C_2^2\times C_6
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: Fit\operatorname{Fit} \simeq D8:C6D_8:C_6 G/FitG/\operatorname{Fit} \simeq C1C_1
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: RR \simeq D8:C6D_8:C_6 G/RG/R \simeq C1C_1
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: soc\operatorname{soc} \simeq C6C_6 G/socG/\operatorname{soc} \simeq C2×D4C_2\times D_4
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: P2P_{ 2 } \simeq D8:C2D_8:C_2
3-Sylow subgroup: P3P_{ 3 } \simeq C3C_3

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series D8:C6D_8:C_6 \rhd C4C_4 \rhd C1C_1
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series D8:C6D_8:C_6 \rhd C6×D4C_6\times D_4 \rhd C2×C12C_2\times C_{12} \rhd C12C_{12} \rhd C6C_6 \rhd C3C_3 \rhd C1C_1
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series D8:C6D_8:C_6 \rhd C4C_4 \rhd C2C_2 \rhd C1C_1
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series C1C_1 \lhd C6C_6 \lhd C2×C12C_2\times C_{12} \lhd D8:C6D_8:C_6
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 85 larger groups in the database.

This group is a maximal quotient of 90 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the 33×3333 \times 33 character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the 22×2222 \times 22 rational character table.