Presentation: |
⟨a,b,c∣a2=b2=c24=[a,b]=1,ca=c13,cb=c19⟩
|
magma:G := PCGroup([6, -2, -2, -2, -2, -2, -3, 938, 692, 50, 681, 69, 88]); a,b,c := Explode([G.1, G.2, G.3]); AssignNames(~G, ["a", "b", "c", "c2", "c4", "c8"]);
gap:G := PcGroupCode(2234586497846286081,96); a := G.1; b := G.2; c := G.3;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(2234586497846286081,96)'); a = G.1; b = G.2; c = G.3;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(2234586497846286081,96)'); a = G.1; b = G.2; c = G.3;
|
Permutation group: | Degree 11
⟨(1,5)(2,6)(3,7)(4,8),(3,4)(5,8)(6,7),(1,2)(3,4),(9,11,10),(1,4,2,3)(5,7,6,8),(1,2)(3,4)(5,6)(7,8)⟩
|
magma:G := PermutationGroup< 11 | (1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,2)(3,4), (9,11,10), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) >;
gap:G := Group( (1,5)(2,6)(3,7)(4,8), (3,4)(5,8)(6,7), (1,2)(3,4), (9,11,10), (1,4,2,3)(5,7,6,8), (1,2)(3,4)(5,6)(7,8) );
sage:G = PermutationGroup(['(1,5)(2,6)(3,7)(4,8)', '(3,4)(5,8)(6,7)', '(1,2)(3,4)', '(9,11,10)', '(1,4,2,3)(5,7,6,8)', '(1,2)(3,4)(5,6)(7,8)'])
|
Matrix group: | ⟨⎝⎜⎜⎜⎜⎜⎜⎛100000001000010000011−100000010000001⎠⎟⎟⎟⎟⎟⎟⎞,⎝⎜⎜⎜⎜⎜⎜⎛111000−1−1−1100−100−100−1−10000000010000001⎠⎟⎟⎟⎟⎟⎟⎞,⎝⎜⎜⎜⎜⎜⎜⎛000−100−1−1−1100001000−10000000000−1000011⎠⎟⎟⎟⎟⎟⎟⎞⟩⊆GL6(Z) |
magma:G := MatrixGroup< 6, Integers() | [[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, -1, -1, -1, 0, 0, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 1]] >;
gap:G := Group([[[1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]], [[1, -1, -1, -1, 0, 0], [1, -1, 0, -1, 0, 0], [1, -1, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]], [[0, -1, 0, -1, 0, 0], [0, -1, 0, 0, 0, 0], [0, -1, 1, 0, 0, 0], [-1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -1, 1]]]);
sage:MS = MatrixSpace(Integers(), 6, 6)
G = MatrixGroup([MS([[1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]), MS([[1, -1, -1, -1, 0, 0], [1, -1, 0, -1, 0, 0], [1, -1, 0, 0, 0, 0], [0, 1, -1, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]), MS([[0, -1, 0, -1, 0, 0], [0, -1, 0, 0, 0, 0], [0, -1, 1, 0, 0, 0], [-1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -1, 1]])])
|
| ⟨(1081),(23095),(1061),(11005),(10019),(10121)⟩⊆GL2(Z/24Z) |
magma:G := MatrixGroup< 2, Integers(24) | [[1, 8, 0, 1], [23, 9, 0, 5], [1, 6, 0, 1], [11, 0, 0, 5], [1, 0, 0, 19], [1, 12, 0, 1]] >;
gap:G := Group([[[ZmodnZObj(1,24), ZmodnZObj(8,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(23,24), ZmodnZObj(9,24)], [ZmodnZObj(0,24), ZmodnZObj(5,24)]],[[ZmodnZObj(1,24), ZmodnZObj(6,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]],[[ZmodnZObj(11,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(5,24)]],[[ZmodnZObj(1,24), ZmodnZObj(0,24)], [ZmodnZObj(0,24), ZmodnZObj(19,24)]],[[ZmodnZObj(1,24), ZmodnZObj(12,24)], [ZmodnZObj(0,24), ZmodnZObj(1,24)]]]);
sage:MS = MatrixSpace(Integers(24), 2, 2)
G = MatrixGroup([MS([[1, 8], [0, 1]]), MS([[23, 9], [0, 5]]), MS([[1, 6], [0, 1]]), MS([[11, 0], [0, 5]]), MS([[1, 0], [0, 19]]), MS([[1, 12], [0, 1]])])
|
Transitive group: |
24T114 |
|
|
|
more information |
Direct product: |
C3 × (D8:C2) |
Semidirect product: |
D8 ⋊ C6 (2) |
SD16 ⋊ C6 (2) |
OD16 ⋊ C6 |
C24 ⋊ C22 (2) |
all 16 |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Non-split product: |
C12 . D4 |
C12 . C23 |
(C2×C6) . D4 |
D4 . (C2×C6) (2) |
all 12 |