Properties

Label 3456.cp.1.a1
Order $ 2^{7} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{4}, b^{2}e^{3}, e^{3}, e^{2}, b, d^{3}, c^{2}d^{8}, d^{6}, c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^2.(D_4\times D_6)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_3^3.C_2^6.C_2^4$
$W$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2.(D_4\times D_6)$
Complements:$C_1$
Maximal under-subgroups:$C_2^3:S_3^3$$C_2^3.S_3^3$$C_6^2.(C_4\times D_6)$$C_6^3.D_4$$C_6^3.D_4$$C_6^3.D_4$$C_6^3.D_4$$C_6^2.(S_3\times D_4)$$C_6^2.(S_3\times D_4)$$C_6^2.(S_3\times D_4)$$C_6^2.(S_3\times D_4)$$C_4.D_6\wr C_2$$S_3\times D_4:D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_6^2:D_6$